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SUMMARY 

An approach for  the numerical solution of flow problems based on the concept o f  fundamental 
solutions of differential equations is described. This approach uses the finite element methodology but 
does not rely on the concept of variational principle or that of residuals. Thc approach is shown to be 
well-suited for many typcs of flow problems. Various applications of this approach are discussed in this 
paper, with particular emphasis placed on the solution of potential flows and viscous flows containing 
appreciable regions of separation. 
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INTRODUCTION 

During the past decade, the fluid dynamics community has experienced an intense growth of 
interest in the computational simulation of flow phenomena. This growth of interest is a 
result of the impressive progress made in the development of efficient and accurate 
numerical procedures for the solution o f  certain t y v s  o f  flows. At present, these type of 
flows are routinely computed in engineering applications. lntensive research efforts arc under 
way t o  develop routine capabilities for computing other types of flows whose computations 
require excessive computer time. 

Until relatively recently, the finite-difference approach has been emphasized by resear- 
chers developing computational methods for viscous flows. For boundary layer flows, the 
finite-difference approach has been found to be particularly powerful. There exist today a 
number of accurate and efficient finite-difference codes with which boundary layer flows of 
various types, including three-dimensional and turbulent flows, can be solved routinely and 
economically on computers with wide accessibility. In contrast, the development of finite- 
difference procedures for general viscous flows, in which flow separation is an important 
feature, has experienced only limited success. In the numerical solution of such flows, the full 
Navier-Stokes equations must be computed in at least the separated region of the flow. In 
this paper, such flows are referred to  as Navier-Stokes flows. 

Finite-difference solutions of a small number of Navier-Stokes flows appeared in the 
1950s and 1960s. These earlier solutions, however, were limited to very low Reynolds 
numbers and t o  extremely simple flow geometries. By the beginning of 1970, it became 
evident that, in order to  free the numerical procedure from the two limitations just stated, 
not only must faster and more powerful computers be built, but also innovative numerical 
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methods must be developed. Since most applications of practical importance involve complex 
flow geometries and high Reynolds numbers, the removal of these two limitations became a 
focal point o f  computational fluid dynamics research in the 1970s. 

Extensive developments o f  grid generation techniques were undertaken by many resear- 
chers in the 1970s. These developments were directed mainly towards the use of finite- 
difference procedures. By the end o f  the 1970s, the development o f  grid-generation 
techniques that produce body-fitted grids for two-dimensional problems had approached a 
state of maturity. Currently, considerable efforts are in progress to develop grid generation 
techniques for three-dimensional applications. 

The use of body-fitted grids for two-dimensional Navier-Stokes flows did not free the 
finite-difference procedures from their Reynolds number limit. It was found in practice that, 
with increasing Reynolds number, the amount of computation required to solve a problem 
increases rapidly. At the same time, the accuracy of the solution deteriorates rapidly. 
Various techniques were devised t o  improve the computational efficiency o f  finite-difference 
procedures. In relation to grid systems, ‘expanding’ grids, i.c. grids with increasing spacing 
between grid lines as the distance from solid boundary increases, are commonly used. Since 
gradients of flow variables arc usually large near the solid boundary and small far from it, an 
expanding grid requires a smaller number of grid points than that required by a non- 
expanding grid. The amount of computation required for high Reynolds number Navier- 
Stokes flows is therefore reduced with the use of an expanding grid. This reduction, however, 
is not sufficient to remove the Reynolds number limit of the finite-difference procedures. 

Relatively recently, finite-element procedures have received some emphases in thc fluid 
dynamics community. These emphases are motivated by the persistent need in fluid dynamics 
for alternatives to the finite-difference approach. An impetus for an accelerated interest in 
the finite-element approach was provided by the success of this approach in the field of solid 
mechanics. Many researchers were of the opinion that the application of the finite-element 
approach to flow problems represents a natural extension of the approach to solid mechanics 
problems. Such an extension, however, has proved t o  be not straightforward and only some 
o f  the difficulties experienced in using the finite difference approach has been removed by 
the finite element approach. In particular, the finitc-element approach has not substantially 
reduced the excessive computing needs o f  the finite-difference techniques, nor has it 
removed the difficulty of obtaining accurate solutions for high Reynolds number Navier- 
Stokes flows. 

In  retrospect, the familiar finite-element procedures should not have been expected t o  
remove all the difficulties experienced by the finite-difference procedures. It is known that, if 
finite-element nodes are arranged in a uniformly spaced rectangular array, then the finitc- 
element algebraic equations obtained through the concept of the variational principle or that 
of residuals, c.g. the Galcrkin’s concept, are often identical t o  finite-difference equations 
obtained using the same grid systems. The familiar finite-element approach is therefore not 
as fundamentally different from the finite-diffcrence approach as some researchers have 
claimed it  to be. 

More than a decade ago, this author initiated a research programme with the goal of 
removing some o f  the difficulties experienced in computing high Reynolds number Navier- 
Stokes flows. During t h c  initial stage of this research programme, an approach which uses 
the finite-element methodology but which does not rely o n  the concept o f  the variational 
principle or that of residuals was found. This approach possesses several highly desirable 
attributes. With this approach, the  differential equations of motion are recast i n t o  the form 
of integral representations through the use of the concept of fundamental solutions. The 
integral representations are then solved numerically. 
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The integral representations are completely equivalent to the more familiar differential 
equations describing the flows. They contain no assumptions or approximations other than 
those contained in the original differential equations. Each of the integral representations is 
composed of an integral over the fluid domain and an integral over the boundary of the fluid 
domain. The integral representation approach is therefore a generalized version of the 
boundary-element method that deals with the boundary integrals. 

During the past decade, this author and his co-workers have carried the development o f  
the integral-representation approach through several stages. In each stage of development, 
several distinguishing features of the approach were incorporated into the solution procedure 
and substantial improvements in both solution efficiency and solution accuracy were 
achieved. The development of this approach has now reached a reasonable stage of 
completion. In particular, Navier-Stokes flows have been treated extensively and the 
advantages offered by the integral-representation method are well documented for these 
type of flows. It has been demonstrated, in addition, that the method is also well-suited for 
the other types of flow problems. 

In this paper, the fundamental concepts of the integral-representation approach are 
described. Applications of this approach to Navier-Stokes flows are discussed. The 
boundary-element methods for potential flows are shown to be a specialized application of 
the integral-representation approach. Numerical illustrations of the application of this 
approach to Navier-Stokes flows are presented. In addition, the interplay between the 
physical and the numerical aspects of flow problems, brought into focus by the use of the 
integral representation approach, is discussed. 

FUNDAMENTAL SOLUTIONS 

The mathematical foundation of the integral-representation approach is the fundamental 
solution, also called the principal solution, of differential equations. To demonstrate the 
solution procedure and several unique features of the approach, the relatively simple 
problem of numerical solution of Poisson's equation is considered below. Two additional 
types of differential equations relevant to flow problems are discussed together with their 
associated fundamental solutions and the corresponding integral representations in the 
Appendix of this paper. 

Corresponding to  a specific differential equation, there are generally several different 
forms of integral representation possible. The equivalence of one form to another is not 
always obvious. The integral representations presented in the Appendix are in forms well 
suited for tthe computation of flow problems. 

Consider Poisson's equation in the form 

V2+ = g, in the Region R (1) 

where 4 is the function to be determined in the region R and the inhomogeneous term g can 
be a function of position and field variables. The region R is either singly- or  multiply- 
connected and is bounded by B, which consists of either a single closed boundary or a closed 
outer boundary and one or more closed inner boundaries. An integral representation for the 
function 4 is' 

where r is the position vector, n is the outward normal direction, the subscript '0' indicates a 
variable, or a differentiation, or an integration in the ro space. The function P is the principal 
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solution defined by 
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where r‘ is the magnitude of r’ defined by 

r’ = ro - r (4) 

The principal solution P satisfies Laplace’s equation V2P = 0. The singularity of P at r = ro 
such that 

( 5 )  
1 
0 

if R contains the point r = ro 
if R does not contain the point r = ro 

j R V 2 P d R = {  

Consequently, the Laplacian of equation (2) gives equation (1). 
Suppose that both 4 and a4/an are known on the boundary B, then a quadrature of the 

right hand side of equation (2) determines the function 4 everywhere in R. As is well known, 
however, the correct boundary condition for equation (1) is either Dirichlet’s or Neurnann’s, 
or a linear combination of the two, over the entire boundary €3. The use of equation (2) in 
place of equation (1) appears to require a knowledge of both 4 and &$/an on B and 
thereforc presents a difficulty. The accepted procedure to remove this difficulty is to modify 
the principal solution in such a way that the modified solution, called Green’s function, 
satisfies Laplace’s equation and possesses a singularity at r = ro, characterized by equation 
(5 ) .  Green’s function, in addition, is required to have the property that either its value or its 
normal gradient vanishes on the boundary B. The integral representation for 4 expressed in 
terms of the Green’s function is identical in form to equation (2), but the integrand in the 
boundary integral now contains only one term, involving either a4/an or 4. Obviously, each 
Green’s function represents a solution of a differential equation associated with a specific 
boundary geometry. As a consequence, methods of solution using Green’s function require 
that a Green’s function be found for each boundary geometry of interest. For a few relatively 
simple geometries, Green’s functions are obtainable analytically by using the method of 
images or other special techniques. Most flow problems of practical importance, however, 
involve boundary geometries of such complexity that Green’s functions are not obtainable 
analytically. 

The fundamental solution P, as defined by equation (3), may be considered a special casc 
of Green’s function which vanishes at infinity. The fact that the fundamental solution is 
independent of any spccific boundary geometry makes it well-suited for numerical proce- 
dures. Regarding the proper prescription of boundary conditions, a closer examination of 
equation (2) reveals that it is possible to use this equation in establishing the missing 
information on the boundary B, using properly prescribed information. Consider the case 
whcre the value of 4 is prescribcd on B. In order to obtain the normal derivative  an on 
B, equation (2) is applied at the boundary, yielding, upon rearrangement, an integral 
equation with a d a n  as the unknown function 
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where r B  is a point on the boundary B, PB rn), and 

The integrands of equation (7) are known and 4(rB) is prescribed. Thus F(rB) is determinate. 
The theory of solution of the integral equation (6) is discussed extensively and fundamental 
existence and uniqueness theorems are available in several well known  treatise^.^.^ For fluid 
flow applications, these questions are most conveniently and fruitfully studied in conjunction 
with each particular type of flow problem at hand. 

Quite often in flow problems, the prescribed condition o n  B is a&/&. In order t o  establish 
the missing information, 6, on the boundary B, equation (2) is applied at the boundary. The 
resulting integral equation contain & as the unknown function. The solution of this integral 
equation gives & and enables the computation of (b in R, away from B, using equation (2). 

DISTINCTIVE CHARACTERISTICS 

In its current context, a finite-element method is a numerical method for solving field 
equations through the mapping of a solution region into subregions, i.e. elements, each 
associated with a finite number of nodes. Continuum field variables are approximated in each 
element by element approximation functions. The field equations are then approximated by 
a set of algebraic equations containing unknown nodal values of the field variables. These 
unknown values are computed by solving the algebraic equations. When the problem of 
interest is expressed as a differential equation or a system of differential equations, current 
finite-element methods require that the problem be first recast into the form of integral 
relations. The integrals over the solution regions are replaced by sums of element integrals, 
each over an individual element. The element integrals, with suitably chosen element 
approximation functions, are evaluated analytically and expressed algebraically in terms of  
the co-ordinates of the nodes and the values of the field vaariables at the nodes. The 
finite-element approach offers an inherent flexibility in the selection of node locations. 

Consider again the relatively simple problem of numerical solution of a scalar Poisson’s 
equation (1). Equation (1) is equivalent to equation (2), which is expressed by the use of the 
finite-element techniques in the form 

where i refers to a node at which the value of 4 is to be computed; j refers to a node in the 
region R ;  k refers to a node located on the boundary B ;  0 is the total number of nodes in 
the solution field, s is the number of nodes on the boundary B ;  A,,, B,, and c , k  are 
geometrical functions dependent only on the space co-ordinates of the node i and of the 
elements containing the nodes j or k ,  as the case may be. It is noted that, because of the 
singularity o f  the fundamental solution, the coefficients A,,, B,, and C,, require special 
treatment. Such treatment is generally not difficult, although a limiting procedure is usually 
involved. It should be noted that with equation (2), or  other integral representations 
presented in the Appendix, the integral over the boundary is not evaluated as a principal 
value. Rather, the point r is always in the region R of interest and this point only approaches 
B in the limit. 

The solution procedure using equation (8) is as follows. If the boundary condition is 
Dirichlet’s, then equation (8) is applied at the S boundary nodes, where (bg is known, to yield 
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a system of s algebraic equations containing the s unknown Values of (addan),, k = 1, 2, 
3 , .  . . S.  This system of equations may contain a defect and therefore requires an auxiliary 
condition for the solution of (ab/lan),. A method of establishing the auxiliary condition is 
discussed by Wu." 

Once the gradients (d&/lan), are determined, they are placed in equation (8), which can 
now be used to evaluate explicitly, node by node, the values of & at nodes away from the 
boundary €3. The procedure is explicit if g is a known function of space co-ordinates or, more 
generally, a function o f  space co-ordinates and field variables that are known at each node j .  

The ability to evaluate field variables explicitly distinguishes the integral-representation 
approach from other numerical procedures that are not based o n  the concept of fundamental 
solutions. It is known that finite-element procedures using the variational principle or the 
concept of residuals t o  establish integral relations, like finite-difference procedures, lead to 
implicit algebraic equations that approximate elliptic differential equations. The explicitness 
of the integral-representation approach has far reaching consequences in the computation of 
potential and Navier-Stokes flows. Some of these consequences are described in this paper. 
With regard to potential flow computations, the integral representation approach is central to 
the boundary-element methods that are receiving considerable attention in the current 
literature. 

FLOW EQUATIONS 

The time dependent motion of an incompressible viscous fluid is governed by the law of mass 
conservation and Newton's laws of motion. The mathematical statements of these laws are 
familiarly expressed in 
the continuity and the 

terms of the velocity vector v and the pressure p. They are known as 
Navier-Stokes equations: 

v . v = o  (9) 

(10) 
aV 1 - = -(v . V)v -- v p  + uv*v 
at P 

where v, p, p and u are respectively the velocity, the pressure, the density, and the kinematic 
viscosity of the fluid; t is the time. For simplicity, u is considered uniform in the present 
paper. 

In principle, equations (9) and (10) are sufficient for the determination of p and v 
everywhere in the fluid domain at every time level, provided that the velocity values are 
prescribed initially in the domain and are also prescribed on the boundary of the domain at 
every subsequent time level. It is more convenient, however, to partition the problem into a 
kinematic part and a kinetic part through the introduction of the vorticity vector o defined 
by 

V x v - 0  (11) 

Kinematics 

Equations (9) and (1 1) together describe the kinematic aspect of the viscous flow problem. 
That is, they express the relationship between the vorticity field at any given instant of time 
and the velocity field at the same instant. 

Two features of the kinematic differential equations are of particular significance. First, the 
diffcrential equations are linear. The kinematic aspect of the problem is therefore amenable 
to classical mathematical analyses. Secondly, the stress-strain relation, which distinguishes a 



FIJNDAMEMAL. SOLU?-IONS 191 

solid from a fluid, does not enter into the kinematic aspect. The fluid and the solid in contact 
with it may therefore be treated together as one kinematic system and the mathematical 
analysis becomes particularly simple. 

Kinetics 

The kinetic aspect of the problem is described by equation (2). This equation is non-linear. 
With the concept of vorticity introduced, equation (2) is expressible as 

av 
at (12) - = - V h + v X o - v V X o  

where h is the total head defined by 
h =- -+$v2  P 

P 

For steady flows, the term &/at vanishes, and equation (12) becomes 

(14) 
1 

VXw=-(vXo-Vh)  
v 

Since o is the curl of v, the divergence of o is identically zero. That is 

V . w = O  (15) 

The set of equations (14) and (15) is analogous to  the set o f  equations (11) and (9). 
For time-dependent flows, by taking the curl of each term in equation (13), one obtains 

the following equation: 

a0 
- = -(v. V ) o + ( o .  V)v+ v v * o  
at  

Equation (16) is known as the vorticity transport equation. The term on the right-hand 
side of equation (16) represents the physical processes of convection, stretching and rotation, 
and diffusion of vorticity in a flow. 

POTENTIAL FLOW AND BOUNDARY ELEMENT METHOD 

Under general circumstances, the kinematic and the kinetic aspects of the flow problems are 
interlaced, and both aspects must be treated in the computation procedure. In the special 
case of potential flows, however, the vorticity field is everywhere zero away from the 
immediate vicinity of the solid boundary, and the kinetics of the flow problem needs not 
enter the solution procedure. 

A potential flow is often thought of as an inviscid flow. In  reality, it is more appropriate to 
consider a potential flow as an approximation of a high Reynolds number flow involving n o  
appreciable region of flow separation. In such a flow, the vorticity, which must originate from 
the solid surface, can only diffuse a short distance into the interior of the fluid domain before 
being carried away by the fluid through the process of convection. The region of non-zero 
vorticity, and hence also the effects of viscosity is then confined to thin boundary layers 
adjacent to solid surfaces and thin wakes trailing the solid. For certain types of flows, the 
effects of the vortical wake on the flow near the solids are negligible. The vorticity in the  thin 
boundary layers can be represented kinematically by a vortex sheet. The strength of this 
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vortex sheet is the integrated vorticity value across the boundary layer and is dependent on 
the location on the solid surface. This strength can be determined by using a boundary 
element method. 

Consider equations (9) and (11). From equation (39) of the Appendix, one obtains an 
integral representation for the velocity vector 

v(r) = - oo x VoP dR0 + [vo.n, - (vo X no) x FOP dBo (17) 

Consider a steady flow past the exterior of a finite solid body. For this flow, the boundary 
B is composed of the solid surface S and an external surface S, enclosing S and infinitely far 
from S. In a reference frame attached to the solid, the velocity values on S is zero because of 
the no-slip condition. The contribution of the boundary integral in equation (17) to the 
velocity field in R is therefore entirely due to the surface S,. It has been shown' that this 
contribution is simply v,, the velocity of the free stream. One thus has 

I, f 

v(r) = - X VoP  dR, + v, I 
For the  potential flow problem under consideration, with the vorticity in the boundary 

layers represented by a vortex sheet, one has 
r 

The integrdnd of the integral in equation (19) can be rewritten as V X ( q , P ) .  Exchanging 
the order of differentiation and integration yields 

where Ji is the  vector potential of the velocity vector and is defined by 

v = v x J i  (22) 
and JiL is the vector potential of the free-stream velocity, y is the strength of the vortex 
sheet, and S '  is the position o f  the vortex sheet. With the vortex sheet representing the 
vorticity in  the boundary layers, S- is a surface enclosing S and is not identical to S.  As an 
approximation, one may consider S' to be external to S (and therefore in the fluid domain) 
and is separated from s by an infinitesimal distance. 

Equation (21) is valid for both three-dimensional and two-dimensional flows. Applying 
equation (21) at the surface S, where the vector potential is known, one obtains an integral 
equation containing y as the unknown function. To demonstrate the procedure for comput- 
ing y ,  consider a two-dimensional flow past the exterior of a thin aerofoil at a low angle of 
attack. For this two-dimensional flow, equation (21) becomes 

where I/J is the stream function of the flow. 
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On the surface S, I,!I vanishes and one obtains from equation (23) the following integral 

(24) 

equation 

rp,, YOPS dR" = I,!I&S) 

where P, =P(r,, r,+), rs is a point o n  the solid surface S and rs. is a point  on S'. 
The solution of equation (24), subject to an auxiliary condition, determines the vortex 

strength distribution on the surface S'. In the present problem, the needed auxiliary 
condition is the well-known Kutta condition. Once the y distribution is computed, it can be 
placed into equation (23) to compute the stream function values explicitly, point by point, 
everywhere in the fluid domain. This unique attribute permits the confinement of the 
computation field to any selected region of interest. 

Consider the aerodynamic computation of the pressure distribution on the surface of the 
aerofoil. In order to determine the pressure, it is only necessary to know t h e  velocity values 
at the outer edge of the boundary layers surrounding the aerofoil. The pressure distribution 
is then immediately obtained from the well-known Bernoulli's equation. 

Within the boundary layer, the definition of the vorticity is simplified and becomes4 

W S  

a n  
a =  -- 

where us is the tangential velocity components and n 
surfaces. Equation (25) gives, upon integration from 
boundary layer, 

y=-v, 

is the normal distance from the solid 
the solid surface to the edge o f  the 

where V,, is the velocity at the outer edge of the boundary layer. In obtaining equation (26), 
the no-slip condition on the solid surface is used. This equation shows that once the vortex 
sheet strength y is obtained, then the boundary-layer edge velocity, and hence also the 
pressure on the aerofoil surface, is immediately determined. With the integral-representation 
procedure just described, therefore, the computation of the pressure requires only the 
solution of equation (20). The entire computation can be confined to the surface S'. In 
consequence, for the two-dimensional potential flow problem under consideration, it is only 
necessary to deal with a one-dimensional integral equation. 

Equation (23) can be obtained alternatively by noting that the stream function satisfy the 
following Poisson's equation 

V(b2 = --o (27) 

The use of equation (2) then leads to equation (23). 
It is easy to see that, with the integral-representation approach, the computation of the 

surface pressure in a three-dimensional potential flow problem requires the solution of a 
two-dimensional integral equation. The region of integration of the integral equation is the 
solid boundary. In the special case of a flow past an axisymmetric body, the two-dimensional 
integral equation can be further reduced to a one-dimensional integral equation over the 
profile of the boundary surface in a meridian plane.' The advantages offered by the 
integral-representation approach in such computations are obviously drastic. 

It should be emphasized that integral equations equivalent to  equation (23) and its 
three-dimensional extensions have been used extensively in the computation of potential 
flows.' The derivations of the integral equations are usually based on the concepts of an 
inviscid fluid, and fictitious source-sink singularities are usually employed.' In the present 
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work, in contrast, the potential flow is considered an approximation of a high Reynolds 
number viscous flow containing n o  appreciable separated region. Since n o  fictitious sing- 
ularities are employed, the use of the integral representation promotes the understanding of 
the interplay between the physical and the numerical aspects of the flow problem. This 
understanding has been an important contributor to the present development of numerical 
procedures for viscous flows. 

BOUNDARY LAYERS 

In the case of a flow containing no appreciable separated region, the vortex sheet strength, y, 
determined from the integral equation, (24), represents the total vorticity across the 
boundary layer surrounding the solid surface. According to equation (26), the velocity at the 
edge of the boundary layer is equal in magnitude to the vortex strength. Thus, the 
computation of the vortex strength is equivalent to the computation of the boundary layer 
edge velocity. There exist a number of efficient and accurate computer codes with which 
boundary layer flows can be solved routinely and economically. 

In the case of a Navier-Stokes flow, separation is an important feature and the procedure 
described for the potential flow computation must be extended. Wherever the flow is 
attached, a vortex sheet strength, or equivalently a boundary-layer edge velocity, can be 
computed by solving an integral equation, after which the computation of the flow within the 
boundary layer is routine. A detailed discussion of the generalized procedure is presented by 
Wu and Gulcat.' 

NAVIER-STOKES FLOWS 

A Navier-Stokes flow differs from a potential flow in  that the region of non-zero vorticity in 
the former is not confined to thin boundary layers adjacent to solid surfaces. The vorticity 
distribution in the fluid cannot be represented accurately by vortex sheets alone. Considera- 
ble experience has been accumulated during the past few years by this author and his 
co-workers in the use of the integral representation approach for computing Navier-Stokes 
flows. Highly complicated Navier-Stokes flows have been solved using this approach. The 
discussions of this approach given in this paper are brief. Suitable references containing 
detailed analyses and extensive numerical results are given along with the brief discussions. 

In the computation of a Navier-Stokes flow, it is convenient to follow the kinetic 
development of the vorticity field in the fluid. A numerical procedure can be established in 
which the solution is advanced from an old level to a new level through a computation loop 
consisting of a kinetic part and a kinematic part. This loop advances the solution by a time 
step in a time-dependent problem and by an iteration in a steady problem. 

The kinetic part of the computation loop is concerned with the transport of vorticity in the 
fluid domain. In this part, with vorticity and velocity distributions known at the old level, 
equation (16) is solved to obtain new vorticity values in the interior of the  fluid domain for 
the new computation level. 

For steady flows, the kinetics of the problem is described by equations (14) and (15). 
These equations are usually solved by the use of a finite-difference procedure, or a 
finite-clement procedure not baqed on the concept of fundamental solution. Alternatively, an 
integral representation for the vorticity vector is obtained from equation (39): 

The integral over R of V h  can be re-expressed as a boundary integral." 



Procedures for computation o f  vorticity values in the interior of the fluid domain using the 
integral representation for the vorticity vector have been developed and presented.* ' The 
use of finite-element methodology yields algebraic equations approximating equation (28). 
There exist a large humber of options in the selection of specific types and interpolation 
functions. The usc o f  polygonal elcnicnts and po1ynomi;il interpolation functions are discus- 
sed in detail in Reference 7. 

For time-dependent flows, the  kinetics of the problem is described by equation (1 6). This 
equation is also usually solved by the use o f  a finite-difference or a familiar finite-element 
procedure. Alternatively, an integral representation for the vorticity vector is obtained by 
using equation (43): 

(29) 

The principal solution Q gives the vorticity distribution in an infinite unlimited stationary 
fluid at the  time level f as a result of diffusion of a unit  amount o f  vorticity located at ro at a 
preceding time level to. The first integral in equation (29) therefore represents the effect of 
an initial ( t  = 0) vorticity distribution. In  actual flows, a stationary fluid cannot co-exist with a 
non-zero vorticity field. The vorticity distribution changes as a result o f  not only the diffusion 
process but also the convection and the  vortex stretching processes. The cumulative effects o f  
these additional processes on the vorticity distribution at the  time level t are represented by 
the second integral. The third integral gives the  effect of the boundary values of o on the 
vorticity distribution in R at the time level t.  This integral may be viewed as representing 
the effcct o f  diffusion of the vorticity field outside the region R on the vorticity field in the 
region R. 

The use o f  the finitc-element methodology in the  numerical quadraturcs with respect to 
time and spacc yields algebraic equations approximating equation (29). There exist again a 
large number of options in the selection of specific element types and interpolation functions, 
with respect t o  both time and space. The algebraic equations used by the present author and 
his  co-workers are described in References 0-1 1. 

The distinguishing feature of the integral representation, equation (29), is that it expresses 
the sevcral kinetic processes that redistribute the vorticity in the fluid as separate integrals. 
This feature offers the possibility of using different numerical quadrature procedures for the 
evaluation of the different kinetic processes. In this manna,  the drastically different 
characteristic time scales o f  thesc kinetic processes can bc individuallv accommodated. Also, 
as noted before, thc contribution o f  the initial vorticity distribution in R to the distribution at 
a later time is identical to the contribution of the  diffusion process in an infinite unbounded 
rcgion. In evaluatiing the first integral in equation (29), therefore, one  needs to solve only 
the homogencous diffusion equation in an infinite unbounded region. The form of the 
principal solution Q, which appears in each of the three integrals o f  equation (29), indicates 
that interpolation functions other than the familiar polynomials should be used for both the 
time element and the spacc elcments. It appcars that simple efficient and accurate proce- 
dures can be developed o n  the basis of these attributes. 

In order to carry out the kinematic part of the computation and to advance the solution 
further, boundary values of vorticity must be determined. These values arc not ordinarily 
prescribed directly from the physics of the problem. Moreover, these values are not 
determined by the kinetics of the problem. Rather, they are governed by the  kinematic3 of 
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the problem, as shall be explained shortly. The kinematic part of the computation loop is 
therefore composed of two steps: (a) the computation of the boundary vorticity values and 
(b) the computation of velocity values in the interior of the fluid domain. The velocity values 
at the boundary of the fluid domain are considered to be prescribed and need not be 
computed. 

I t  has been shown that," with any given distribution of vorticity in a singly connected 
region R and on its boundary B, if either the normal component or the tangential 
component of the velocity is specified on B, then a unique solution of equations (9) and (11) 
exists in R. If R is multiply connected, then the circulations around the several independent 
circuits in R must also be specified. The specification of both the normal and the tangential 
components of velocity on B overspecifies the problem. It should be pointed out that both 
the  normal and the tangential velocity components are prescribed by the physics of the 
problem; and both appear in the boundary integral of equation (17). The use of equation 
(17) therefore appears to overspecify the kinematics of the problem. In reality, the prescrip- 
tion of both the  normal and the tangential velocity component places a kinematic restriction 
on the distribution of vorticity in R. This restriction permits the boundary vorticity values to 
be determined. 

In Reference 12, detailed discussions of the use of equation (17) in the computation of the 
boundary vorticity values are presented. The procedure described in Reference 12 can be 
considered an extension of the procedure described earlier for the computation of potential 
flows. For the Navier-Stokes flow being considered, the vorticity in a thin layer surrounding 
the  solid surface can be represented by a vortcx sheet of strength y. For two-dimensional 
flows, a derivation similar to that preceding equation (23) yields an integral representation: 

where R . is the region outside of the thin layer surrounding the solid surface. 
Equation (30) differs from equation (23) only in the presence of the integral over R- .  

Since R- is the interior of the  fluid domain, the vorticity in R- is determined kinetically from 
the vorticity transport equation. Equation (301, when applied to the solid surface S, gives 

where GU is the contribution of the vorticity in R to the stream function on S.  Since $a is 
known, in the kinematic part o f  the computation the vortex sheet strength y can be 
determined by solving equation (31). In the  attached part of the Navier-Stokes flow, y gives 
the boundary-layer edge velocity in accordance with equation (26). In the separated part of 
the Navier-Stokes flow, the vortex sheet strength y represents the total vorticity across a thin 
layer in the  separated flow. The boundary value of vorticity can be determined by distrihut- 
ing the total vorticity suitably across the layer. 

The boundary vorticity values can be computed kinematically without relying upon the 
concept o f  a vortex sheet. To accomplish this, one uses the finite-element methodology and 
approximates equation (17) by 

Vn, 2 A m ,  X u "  $- 2 (BmbVb + C m b  xvb) (32) 

where the  subscripts rn, n and b designate, respectively, velocity nodes, vorticity nodes and 
velocity nodes o n  B ;  A,,, B,h and c,, are geometrical coefficients depending only upon the 

N u 

n = l  h -  I 
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relative positions of the nodes m and n, or  m and 6 ;  N is the total number of nodes in R and 
on B ;  B is the number of nodes on B. 

Applying equation (32)  at nodes on B yields 

where the subscript c indicates a boundary velocity node. 
In equation (33), the only unknown quantities are the boundary values of o on B. A 

solution of equation (33)  yields the boundary values of o. 
Once the boundary values of o are computed, equation (32) can be used to compute v 

values explicitly, point by point. The unique attribute of the integral representation approach 
in explicitly computing the velocity values offers great advantages to the computation of 
Navier-Stokes flows. It permits the velocity values to be computed in any selected region of 
the flowfield. It is obvious from the vorticity transport equation (16) that infqrmation about 
the velocity field is needed only in the region of non-zero vorticity in order to determine the 
effect of convection. This region of non-zero vorticity is the only region in which viscous 
effects are important. In many viscous flow problems, including those involving massive 
regions of separation, the viscous region occupies only a small portion of the total flow field. 
The integral representation permits the confinement of the computation to the viscous 
region. In consequence, drastic reductions in the number of data points and in the amount of 
computation was achieved. 

The integral representation further permits the confined solution field to be segmented and 
the computation within each segment performed independently of those in other segments.13 
It also permits the boundary layer region of the flow to he treated separately from the 
detached viscous r e g i ~ n . ~ , ' ~  Furthermore, it is simple to form hybrid approaches"*I6 in which 
the integral representation approach is used advantageously in some parts of the flow. 

The ability to treat the boundary layer and the detached regions of the Navier-Stokes 
flows separately is of particular importance to the computation of high Reynolds number 
flows. In such flows, because of the drastic difference in the length scales associated with the 
boundary layers and the detached regions, the computer time requirements is often excessive 
and the solution accurdcy is usually inadeq~ate .~."  This drastic difference in length scale is, 
in fact, responsible for the Reynolds number limit of previous numerical methods. This limit 
is successfully removed by a separate treatment of the boundary layer and detached 
r eg i~ns .~ , '~ . ' '  

ILLUSTRATIVE RESULTS 

It has been found that the integral-representation approach is well-suited for a wide range of 
viscous flow problems involving flow separation. In recent articles, this author and his 
co-workers have presented numerical results for turbulent  flow^,'"^^.^'' for compressible 
 flow^,^'.^^ and for internal steady  flow^.^.'.^ In these recent works, integral representations 
are used in the kinematic part of the computation. Rizk," however, obtained results for 
viscous flows using integral representations in both the kinetic and kinematic parts of the 
computation. Selected results for Navier-Stokes flows are presented here to illustrate the 
application of the integral-representation approach. 

The flow past a circular cylinder at a Reynolds number based on the cylinder diameter of 
40,000 is computed using the integral-representation approach and treating the boundary 
layer and the detached regions in a Navier-Stokes flow separately. In Figure 1 are shown the 
pressure distributions computed using the integral-representation approach compared with 
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Figure I ,  Surface pressure distribution o n  a circular cylinder at a Reynolds number of 40.000: - experimental 
data: - -- integrA1 representation; - .  -finite difference 

experimental data2' and finite-difference results.24 The agreement between the present 
results and the experimental data is remarkable. In contrast, the finite-difference results 
deviate substantially from the experimental data. The accuracy of the integral-representation 
approach has been also calibrated by computing flows past circular cylinders at lower 
Reynolds numbers. In all cases computed, the agreements between the present results and 
experimental data are excellent." 

A most reassuring feature of the integral-representation approach is that the computer 
time required to solve a given flow problem is insensitive to the flow Reynolds number. At 
t h e  present, the computation of the flow past the circular cylinder requires approximately 
twenty minutes of CDC-6600 CPU time for laminar flows in the Reynolds number range o f  
SO0 to 100,000. The integral-representation approach is not Reynolds number limited. 

In  Figure 2 is shown a computed turbulent flow pattern past a 12 percent symmetric 

. .  . -. .- ,z . : . ~- - .  - . 
.- 
: - .. - - .. . 

. .  . 
.. . - 

- . :- . 

Figure 2. Streamline around 12 pcrcent thick aerofoil at 15" angle of attack and Reynolds numlxr of 3.6 x 1 0 "  



aerofoil at an angle of attack of 15" and at a Reynolds number based on the chord length o f  
3 . 6 X  lo6. A two-equation differential model of turbulence is u ~ e d . ' ~ . ~ "  The aerofoil is set 
into motion from rest and the solution is carried to a large time level. The flow field around 
the aerofoil does not approach an asymptotic steady state. Rather, a cyclic shedding of 
vortices from the separated region near the aerofoil occurs. This cyclic shedding of vortices is 
similar to the well-known Karman vortex shedding behind a circular cylinder. 

CONCLUDING REMARKS 

The integral-representation procedure that has been developed on the basis of principal 
solutions represents a major departure from previous finite-difference and finite-element 
methods. The use of the integral representation containing the principal solutions offer a 
number of decisive advantages. The most important advantage is the removal of the 
Reynolds number limit in the computation of Navier-Stokes flows. Highly efficient computer 
codes have been prepared for the computation of two-dimensional laminar and turbulent, 
steady and time-dependent, incompressible and compressiblc viscous flows involving large 
separation regions in two dimensions. Current efforts are directed towards the  full use of the 
advantageous attributes of the integral representation for the kinetic aspect of viscous flows 
and the development of highly efficient three-dimensional algorithms. 
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APPENDIX 

An integral representation for the scalar Poisson's equation is given in the main text of this 
paper as equation (2). Integral representations for two other types of differential equations 
relevant to flow problems are given here. 

(a) Vector field with specified dilatution and rotution. 

Consider the  pair of vector equations: 

V . F = g ,  V x F = G  (34) 

where g and G are, respectively, the dilatation and rotation of F and are known functions of 
position and field variables (including F) and are continuous and bounded in the region R. 
The vector F may be decomposed into a solenoidal part FI and an irrotational part F,, 

F = F, + Fz 
with F, satisfying 

and F, satisfying 
V.F, = 0, VXF, = G, 

V.Fz=g, VXF,=O 

Since F, is irrotational, a scalar potential 4, defined by V 4  = FZ, exists. The first equation of 
(37)  thaefore  gives V2b = g. An integral representation for F, is given by equation (2). By 
taking the gradient of equation (2), one obtains an integral representation for F,. Taking the 
curl o f  the second equation in (36) and using the  first equation in (36), one obtains a vector 
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Poisson's equation V'F, = -VxG. An integral representation for F1 is then obtained by 
replacing the scalar quantities 4 and g in equation (2) by the vector quantities F and -V X G. 
For computational purposes, however, it is more convenient to consider the pair of equations 
V x + = F , ,  where + is the vector potential whose existence is implied by the fact F, is 
solenoidal, and V x F, = G. This pair of equations is equivalent to (36) .  The vector funda- 
mental solution P for the pair is 

P=VPxa  (38) 

where P is the scalar fundamental solution defined by equation ( 3 ) .  By the use of P, an 
integral representation for F, is obtained.' Adding the integral representation for F1 to that 
for FZ, one obtains 

which is an integral representation for F corresponding to the pair of vector equations (34) 

(b) Transport equations 

expressible in the scalar case in the form 
The time-dependent transport equation is parabolic in its time-space relationship and 

where 4 may be a function of position, time, 4 and first spatial derivatives of 4 and of other 
field variables. For the case when a is a constant, the fundamental solution corresponding to 
equation (40) is 

where t ' =  to-  t and d is the number of spatial dimensionality; i.e. d = 3 for problems 
involving three spatial dimensions, etc. l h e  principal solution possesses the following 
properties: 

1 aQ 
u at C2Q +- - = 0, in R for all I 

and for t = t , ,  

0, for R not containing r = ru 
l R Q d R = (  1, for R containing r = ro 

By integrating the expression 

over R and over the time interval 0 < t < to and using the divergence theorem, one obtains 

4(r3 t )  = - ~ l ) ' d t o L  Q&dRo+I  (Q$o)k , -o  dRu 
H 
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Equation (43) is an integral representation for (1, corresponding to the  scalar transport 
equation (40). For a vector transport equation, an integral representation is readily obtaina- 
ble from equation (43) by replacing JI and 4 by their vector counterparts in the vector 
transport equation. 
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